DSpace Repository

Formation of zinc oxide buried layers within the walls of the aero-GaN microtubes

Show simple item record

dc.contributor.author BRANISTE, Tudor
dc.contributor.author FOGARASSY, Zsolt
dc.contributor.author KOVACS, Andras
dc.contributor.author PÉCZ, Béla
dc.contributor.author TIGINYANU, Ion
dc.date.accessioned 2026-02-13T16:14:19Z
dc.date.available 2026-02-13T16:14:19Z
dc.date.issued 2025
dc.identifier.citation BRANISTE, Tudor; Zsolt FOGARASSY; Andras KOVACS; Béla PÉCZ and TIGINYANU Ion. Formation of zinc oxide buried layers within the walls of the aero-GaN microtubes. In: 7th International Conference on Nanotechnologies and Biomedical Engineering, ICNBME 2025, Nanotechnologies and Nano-biomaterials for Applications in Medicine, Chisinau, Republica Moldova, 7-10 October, 2025. Technical University of Moldova. Springer Nature, 2025, vol. 1, pp. 104-111. ISBN 978-3-032-06493-6, eISBN 978-3-032-06494-3, ISSN 1680-0737, eISSN 1433-9277. en_US
dc.identifier.isbn 978-303206493-6
dc.identifier.isbn 978-3-032-06494-3
dc.identifier.issn 1680-0737
dc.identifier.issn 1433-9277
dc.identifier.uri https://doi.org/10.1007/978-3-032-06494-3_12
dc.identifier.uri https://repository.utm.md/handle/5014/35171
dc.description Acces full text: https://doi.org/10.1007/978-3-032-06494-3_12 en_US
dc.description.abstract This work reports on the innovative fabrication and detailed characterization of aerogalnite (aero-GaN) microtubes featuring encapsulated zinc oxide (ZnO) layers. These distinctive buried ZnO layers emerge during a carefully controlled Gallium Nitride (GaN) growth process conducted via hydride vapor phase epitaxy (HVPE) on an interconnected, three-dimensional ZnO microtetrapod network employed as a sacrificial template. The complex synthetic route involves two stages at different temperatures. Initially, at low-temperature (600 °C) the nucleation and growth phase of epitaxial GaN layer occurs, followed by a high-temperature (850 °C) growth regime to accelerate GaN film formation. Intriguingly, this high-temperature phase also induces the controlled decomposition and subsequent removal of the ZnO template. Comprehensive transmission electron microscopy (TEM) studies reveal that, despite the extensive removal of the sacrificial ZnO template, an exceptionally thin ZnO layer persists on the inner surface of the resulting GaN microtubes. Critically, this interfacial ZnO film subsequently becomes wholly encapsulated, forming well-defined, spatially discrete buried layers within the evolving GaN structure as the aerogalnite growth process continues. The resulting aerogalnite structure, bearing these meticulously crafted ZnO/GaN heterojunctions with a minimized lattice mismatch, presents possibilities for the future exploration of novel material properties and advanced device designs. The creation of buried ZnO layers may permit an unprecedented degree of modulation of the GaN microtube interface characteristics, opening diverse pathways towards tailored electronic and optoelectronic properties. en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.rights Attribution-NonCommercial-NoDerivs 3.0 United States *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject aerogalnite en_US
dc.subject buried en_US
dc.subject layer en_US
dc.title Formation of zinc oxide buried layers within the walls of the aero-GaN microtubes en_US
dc.type Article en_US


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States

Search DSpace


Advanced Search

Browse

My Account