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Abstract 
 

Peierls transition in quasi-one-dimensional organic crystals of tetrathiofulvalene-

tetracyanoquinodimethane (TTF-TCNQ) type is studied in the case where the conduction band is 

half filled and Fermi dimensionless quasi momentum kF = /2 and where the concentration of 

conduction electrons is reduced and the band is filled up to a quarter of the Brillouin zone,  

kF = /4. In the physical model of the crystal, it was simultaneously taken into account two the 

most important interactions of conduction electrons with the longitudinal acoustic phonons. The 

dispersion equation for renormalized phonons was deduced and solved numerically. The phonon 

frequency dependences on quasi momentum projection along molecular wires were calculated for 

different temperatures. The critical temperature of transition was determined.   

 

1. Introduction 

 

In the last years, an increase of investigations of organic materials for electronic devices 

has been observed. These materials have more diverse properties in comparison with the known 

inorganic ones and are expected to be cheaper and more efficient. A special interest is noticed in 

the applications of quasi-one-dimensional organic materials for thermoelectric devices designed 

to convert heat directly into electricity, or electricity in cooling. It was demonstrated theoretically 

(see [1] and references therein) that after the optimization of parameters, these crystals can have 

much better thermoelectric properties than those known so far. For this reason, the interest in the 

investigation of these crystals has increased significantly. 

The best theoretically and experimentally studied quasi-one-dimensional organic crystals 

include those of tetrathiofulvalene-tetracyanoquinodimethane (TTF-TCNQ). At present, not all 

parameters of these crystals are well determined; for this reason, it is necessary to expand the 

number of experiments, including the comparison of theoretical results with the experimentally 

obtained data to specify the values of certain parameters of these crystals. In this paper, we 

propose to use Peierls structural transition phenomenon for this purpose [2]. The Peierls 

transition is currently studied in many papers (see [3] and references therein). 

In previous papers [4-5], the Peierls transition in conductive chains of TCNQ was studied 

for the case in which the conduction band is half filled and Fermi quasi momentum kF = /2b, 

where b is the lattice constant in the wire direction. The critical temperature transition value was 

also calculated, which corresponds to the experimental value. In this paper, we generalize the 

previous calculations and study the Peierls transition for the case where the conduction band is 

filled up to a quarter of the Brillouin zone, which means that the projection of Fermi quasi 

momentum along TCNQ conducting wire direction kF = /4b. The Peierls transition temperature 

in these cases is also determined. For comparison, the two cases are described in detail.  
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2. Crystal model 

 

The TTF-TCNQ compound forms quasi-one-dimensional organic crystals composed of 

TCNQ and TTF linear segregated chains. The TCNQ molecules are strong acceptors, and the 

TTF molecules are donors. However, the conductivity of TTF chains is much lower than that of 

TCNQ chains and can be neglected in the first approximation. Moreover, we will neglect the 

interaction between TCNQ chains because electrical conductivity in the transversal to chains 

direction is almost three orders of magnitude smaller than along the chains. Thus, the conduction 

electrons move in a one-dimensional energy band. 

We will apply the quasi-one-dimensional organic crystals model described in [6]. The 

Hamiltonian of a linear chain of molecules in the tight binding and nearest neighborhoods 

approximations is as follows: 
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The first term is the energy operator of free electrons with wave vector projection k along 

the chain and energy )cos1(2)( kbwk  , where w (w > 0) and b are the transfer energy of an 

electron between the nearest molecules and lattice constant along the molecular chain,  )( kk aa  

are creation and annihilation operators. The second term in relation (1) is the energy of 

longitudinal acoustic phonons with the wave vector projection q along the chain and the 

frequency 2/sin2 1 qbbvsq
 , where sv  is the speed of sound along the chains. It is supposed 

that sv  is determined for the free phonons in the absence of conduction electrons. In this case sv  

can be easily calculated and we have )2/(0 Mcbvs  , where c0 is the generalized coefficient of 

elasticity which determines the force of interaction between nearest two molecules along the 

chain, and M is the mass of TCNQ molecule. 

The third term of equation (1) represents the electron-phonon interactions. Two 

interaction mechanisms are considered. The matrix element of the first interaction is determined 

by the energy transfer w fluctuations, due to the intermolecular vibrations (acoustic phonons)                                       

                       ],)sin([sin)2(2),( 2/12/1
1 bqkkbNMwiqkA q                                  (2) 

where M is the mass of a molecule, N is the number of molecules in the basic region of the chain. 

This interaction is similar to that of deformation potential, and the coupling constant is 

proportional to the derivative wof w with respect to the intermolecular distance, w  > 0. 

The matrix element )(2 qA  describes the interaction which is conditioned by the 

fluctuations of the polarization energy of the molecules around the conduction electron 

                               .sin)2(4)( 2/15
0

22/1
2 qbNMbeiqA q

                                             (3)                               

Here e is the electron charge. The coupling constant of this interaction is proportional to the 

average polarizability of the molecule 0 . So as 0  is proportional to the volume of molecules, 

this interaction is important for crystals composed of large molecules such as TCNQ. Note that 

the same acoustic longitudinal phonons participate in (2) and (3). One can demonstrate that the 

carriers do not interact with the bend vibrations of the linear chains. 

The matrix element A(k,q) is represented in the following form:  

                                          

                     ]sin))sin((][sin)2/(2[),( 2/12/1 qbbqkkbNMwiqkA q    ,                                  (4) 

where the parameter γ has the meaning of the amplitude ratio of second electron-phonon 
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interaction to the first one, wbe  5
0

2 /2  . At γ = 0, only the first mechanism of interaction 

remains. 

In order to calculate the renormalized phonon spectrum, the method of retarded Green 

functions will be applied. We will use the Feynman diagrams technique for temperature-

dependent Green functions [7], and then will analytically extend the previous functions from the 

discrete frequencies into the upper half plane of the complex frequency. The Green function pole 

will determine the phonon spectrum. 

 From exact series of the perturbation theory for the phonon Green function, we sum up 

the diagrams containing 0,1,2, ... ∞ closed loops of two electron Green functions which make the 

most important contribution. This is a random phase approximation. We denote the phonons 

Green function in this approximation by ),( ttxxD  , and the free phonons one by 

),(0 ttxxD  , where x and x  are spatial coordinates, t and t   - time coordinates. For the 

function ),( ttxxD   an integral equation is obtained. Performing Fourier transformation after 

spatial and time coordinates, we obtain the Fourier component of the Green function D(q,) 
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where  q,  is the polarization operator. Introducing instead of  q,  a new dimensionless 

polarization operator   ),()/1(,  qq q  , we will have                          
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Here A(k, q) is the matrix element of electron-phonon interaction presented in (4), nk is the Fermi 

distribution function, and ħ is the Planck constant. The integral in (6) has singularities and must 

be calculated as Cauchy principal value. The renormalized acoustic phonons spectrum Ω(q) is 

determined by the pole of function  D(q,) and is obtained from the transcendent dispersion 

equation 

                                                
2/1)],(1[)(  qq q .                                                            (7)  

Unfortunately, this equation can be calculated only numerically. 

The results of calculation of Ω(q) for different temperatures in the case where the 

conduction band is half filled are presented in Figs. 16 for kF = /2b, where q is denoted by 

(q). The crystal parameters are: w = 0.125 eV, w = 0.2 eV Å
-1
, b = 3.82 Å, 

vs = 3.24·10
5
 cm/s, M = 3.7·10

5me (me is the mass of the free electron). The parameter 

0  is not known for the TCNQ molecule. We will take several values of 0 that will correspond 

to several values of γ. 

Figure 1 shows the case where γ = 0 and only the first mechanism of interaction remains, 

similar to that of the deformation potential, which was also considered in [2]. For comparison, 

Fig. 2 represents the result of [2]: (a) where the temperature T is higher than the Peierls critical 

temperature Tp and (b) where T = Tp. Comparing Figs. 1 and 2, we can state that the more detailed 

calculations even within the same model have modified the dependences Ω(q). The maximum 

frequency Ω(q) is now lower than the initial frequency (q), which corresponds to the same 

values of q. This means that, due to the electron-phonon interaction, the elasticity coefficient of 

the interaction force between molecules is reduced over a wide range of q. For values of q close 

to qb ~  the elasticity coefficient considerably decreases with decreasing temperature. 
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Frequencies Ω(q) become lower, and at T = 59 K Ω(q) is almost zero. In the middle range of   

0 < qb  < 2, when qb = , a new edge of the Brillouin zone appears, which means that the lattice 

constant is doubled and the Peierls transition takes place. The Peierls critical temperature is  

~59 K and corresponds to the experimental data. For long waves, the phonon spectrum hardly 

changes at all. 

 

           

Figure 3 shows the calculations for the case where  = 0.5. The maximum of Ω is now 

decreased. The speed of sound along the chains remains almost the same. The Peierls critical 

temperature has not changed. 

Figure 4 represents the calculations for the case where  = 1. The two electron-phonon 

interaction amplitudes now have the same values. It is evident that the maximum of Ω is further 

decreased, but the speed of sound along the chains has also decreased; it is equal to the angular 

coefficient dΩ(q)/dq of curves  for small q. The Peierls critical temperature is not changed. 

Fig. 1. Renormalized phonon spectrum Ω(q) 

for  = 0 and different temperatures. The 

dashed line is for the spectrum of free phonons.  

Fig. 2. Renormalized phonon spectrum Ω(q) 

from [2] for  = 0 and different temperatures.  

The dashed line is for free phonons.  

Fig. 3. The same as in Fig. 1 for    

 = 0.5.         
 

Fig. 4. The same as in Fig. 1 for    = 1. 
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Figure 5 represents calculations for the 

case where  = 1.5. The electron-phonon 

interaction becomes stronger and the changes in 

spectrum Ω(q) become more pronounced, the 

maximum of Ω(q) is decreased to 12.7x10
12

 s
-1

, 

and the sound velocity has further decreased, 

the dependence of Ω on q being almost linear up 

to qb ~ 2. The further diminution of sound 

velocity is due to a further decrease of elasticity 

force of interaction between molecules as a 

consequence of electron-phonon interaction. In 

the region of qb ~  the dependences Ω(q) 

remains the same as in Fig. 4 with the exception 

that the trace of Ω softening has disappeared at 

T = 550 K. The Peierls critical temperature is 

not changed.  

          

Figure 6 shows the calculations for the 

case where  = 1.8. The changes in the spectrum 

Ω(q) become still more pronounced. 

           The results for the case where the 

conduction band is filled up to a quarter of the 

Brillouin zone (kF = /4b) are shown in Figs. 7 

and 911.  

Figure 7 shows the case where  = 0, 

which was earlier also considered in [2]. It is 

evident that the maximum of (q) is diminished 

in comparison with the frequency ω(q) in the 

Fig. 7. Renormalized phonon spectrum Ω(q) 

for  = 0 and different temperatures. The 
dashed line is for the spectrum of free phonons.  
 

Fig. 8. Renormalized phonon spectrum Ω(q) 

from [2] for  = 0 and different temperatures. 

The dashed line is for free phonons. 
  

 

Fig. 6. The same as in Fig. 1 for  = 1.8. 
 

Fig. 5. The same as in Fig. 1 for   = 1.5. 
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absence of electron-phonon interaction. With a decrease in temperature, two minimums appear in 

dependences (q), which become more pronounced at lower temperatures. At T ~ 8.8 K the 

frequency (q) becomes zero for qb = /2 and qb = 3/2. This means that, at this temperature, 

the structural Peierls transition occurs. The crystal lattice changes from the initial state with the 

lattice constant b to a new crystalline state with constant 4b, four times larger. Figure 8 represents 

dependences (q) taken from [2] and measured for the same physical model and values of crystal 

parameters as in Fig. 7. By comparing Figs. 7 and 8, one can observe that more detailed 

calculations in Fig. 7 have determined considerable modifications of phonon spectrum. Firstly, 

the renormalized frequency (q) is decreased almost in the entire interval of 0  qb  2. 

Secondly, the minimums at qb = /2 and qb = 3/2 are much more sharp.   

 

Figures 9 and 10 show the cases where  

 = 0.3 and  = 0.5. It is evident that the slope of 

curves at small qb is diminished. This means 

that the sound velocity along the chains is 

diminished. As in the case where kF = /2b, this 

diminution is due to a decrease in the elasticity 

force of interaction between two nearest 

molecules as a consequence of electron-phonon 

interaction. The transition temperature now 

becomes different for different values of . The 

transition temperature is 54.2 K for  = 0.3 and 

123.6 K for  = 0.5. So as the Peierls transition 

appears as competition between the diminution 

of the electron subsystem energy and the 

increase in the elastic lattice energy caused by 

lattice deformation, one can conclude that in the 

considered cases where the parameter  

increases, the overcome of electron subsystem 

energy is increased. Accordingly, with an increase in , the critical transition temperature 

increases too. 

 
Fig. 10. Renormalized phonon spectrum Ω(q) 

for  = 0.5 and different temperatures. The 
dashed line is for the spectrum of free phonons.  

Fig. 11. Renormalized phonon spectrum Ω(q) 

for  = 0.6 and different temperatures. The 
dashed line is for the spectrum of free phonons. 

Fig.9. Renormalized phonon spectrum 

Ω(q) for  = 0.3 and different 
temperatures. The dashed line is for the 
spectrum of free phonons.  
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Figure 11 represents the results for  = 0.6. In this case, the transition temperature is  

176 K. It is also seen that the slope of curves is further increased at small qb. This means that the 

sound velocity along the chains is further decreased and this effect is much more pronounced that 

in the previous case where kF = /2b and  = 0.6. In the scheme of reduced bands, we will have 

four dispersion curves. At temperatures lower than Tp, the renormalized phonon spectrum will 

consist of one acoustic branch and three optical branches. However, this issue will be considered 

in a separate paper.     

 

3. Conclusions 

 

We have studied the Peierls transition in quasi-one-dimensional organic crystals of  

TTF-TCNQ type. A more complete crystal model is applied, which takes into account two the 

most important electron-phonon interactions. One interaction is of deformation potential type and 

the other is similar to that of polaron. The ratio of amplitudes of the second interaction to that of 

the first one is characterized by the parameter γ. At γ = 0, there remains only the first interaction, 

which was considered earlier by other authors. The renormalized acoustic phonon frequencies 

(q) are calculated in two cases: where the conduction band is half filled and the dimensionless 

Fermi momentum kF = /2 and where the concentration of conduction electrons is reduced and 

the band is filled up to a quarter of the Brillouin zone, kF = /4. The results are compared with 

those obtained by other authors. It is shown that a more detailed calculation made in the present 

paper considerably modifies the dependences (q) even   within the same crystal model (γ = 0). 

For larger values of , the electron-phonon interaction becomes stronger and the modifications of 

(q) become more pronounced. In the case where kF = /2, the Peierls critical temperature 

remains to be ~59 K for all γ and corresponds to the experimental data. In the case where  

kF = /4, the Peierls critical temperature Tp is different for different values of the parameter  

: Tp = 8.8, 54.2, 123.6, and 176 K for  = 0, 0.3, 0.5, and 0.6, respectively. With an increase in , 

the sound velocity considerably decreases, especially in the case of a quarter filled band.   
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