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Abstract 

 

The metal–insulator transition of the Peierls type is studied in organic crystals of 

tetrathiotetracene iodide with the lowest carrier concentration value in a 2D approximation. The 

two most important electron–phonon interaction mechanisms—of the deformation potential type 

and the polaron type—are considered. The dynamical interaction of carriers with defects is also 

taken into account. The renormalized phonon spectrum is calculated; it is shown that the 

transition is of the Peierls type.  

 

1. Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

 

In the last years, quasi-one-dimensional (Q1D) organic crystals have attracted increasing 

attention in the scientific world due to more diverse and, in many cases, unusual properties 

exhibited by them. Organic nanomaterials have large potential applications in electronic, sensing, 

energy-harnessing, and quantum-scale systems [1]. It was also shown that highly conducting 

Q1D organic crystals can have extremely promising thermoelectric applications. Since not all 

parameters of these materials are well known, it is very important to apply different methods—

both theoretical and experimental—to determine some of them. In this paper, we study the Peierls 

structural transition for this purpose.  

This phenomenon was theoretically predicted by Rudolf Peierls. According to Peierls, at 

some lowered temperatures, a one-dimensional metallic crystal with a half filled conduction band 

has to pass in a dielectric state with a dimerized crystal lattice. This temperature is referred to as 

the Peierls critical temperature. The Peierls transition was studied by many authors [2–5]. To the 

best of our knowledge, the Peierls transition in tetrathiotetraceneiodide (TTT2I3) crystals has not 

been studied either theoretically, or experimentally. This material was synthesized independently 

and nearly simultaneously by the authors of [6–9] with the aim to find superconductivity in a 

low-dimensional conductor. At the same time, these crystals with the lowering temperature show 

a metal-dielectric transition. Earlier [10] we have shown for a crystal with a highest carrier 

concentration and the TTT2I3.1 composition that the transition is of the Peierls type.  

For these crystals, the dimensionless Fermi momentum kF= 0.517/2. In this case, it was 

found that the Peierls transition begins at T ~ 35 K in TTT chains and considerably reduces the 

electrical conductivity. Due to interchain interaction, the transition is completed at T ~ 19 K.  

The authors of [12] studied a 3D physical crystal model for the same curve. It was found 

that the transition begins at T ~ 35 K in TTT chains and is completed at T ~ 9.8 K, as observed 

mailto:andronic_silvia@yahoo.com


Moldavian Journal of the Physical Sciences, Vol. 18, 1-4, 2019 
 

 22 

experimentally.  

 

In this paper, we will study the 

behavior of the Peierls transition in TTT2I3 

crystals with the lowest carrier 

concentration value. For simplicity, we will 

apply the 2D approximation. We will 

analyze the Peierls structural transition for 

the curve shown in Fig. 1. The 

dimensionless Fermi momentum in this 

case is kF=0.502/2. In addition, the Peierls 

critical temperature Tp is determined.  

 

 

  

 

 

 

 

2. Physical Model of Crystals 

 

The physical model of crystals was described in more detail in [11]. The Hamiltonian of 

the 2D crystal model in the tight binding and nearest neighbor approximations has the form 
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Here, the first term is the energy operator of free holes in the periodic field of the lattice. The hole 

energy is measured from the band top; it is presented in the following form: 
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 (2) 

where w1 and w2 are the transfer energies of a hole from one molecule to another along the chain 

(x direction) and perpendicular to it (y direction). 

In Eq. (1) ak
+
, ak are the creation and annihilation operators of the hole with a 2D quasi-

wave vector k and projections (kx, ky); bq
+
, bq are creation and annihilation operators of an 

acoustic phonon with 2D wave vector q and frequency ωq. 

The second term in the Eq. (1) is the energy operator of longitudinal acoustic phonons 
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where ω1 and ω2 are the limit frequencies in the x and y directions. 

The third term represents the electron–phonon interactions. The two most important 

electron–phonon interaction mechanisms—of the deformation potential type and the polaron 

type—are considered. The coupling constants of the first interaction are proportional to 

derivatives 1w  and 2w  of w1 and w2, with respect to the intermolecular distances. The coupling 

constant of second interaction is proportional to the average polarizability of the molecule 0 . 

Fig. 1. Temperature dependence of electrical 

conductivity of the TTT2I3+δ crystal, δ = 0.01.          

Max – 90 K, σ → 0 at 20 K [10]. 

(1) 
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This interaction is important for crystals composed of large molecules, such as TTT, so that 0 is 

roughly proportional to the molecule volume. The ratio of amplitudes of the polaron-type 

interaction to the deformation potential one in the x and y directions is described by parameters γ1 

and γ2: 
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The square module of matrix element A(k,q) from Eq. (1) can be written in the form 
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Here, M  is the mass of the molecule, N  is the number of molecules in the basic region of the 

crystal, d1 = w2/ w1 = 
2

w /
1

w . 

To explain the behavior of the electrical conductivity from Fig.1, it is necessary to take 

into account the dynamical interaction of carriers with defects. The static interaction will give 

contribution to the renormalization of the hole spectrum. Defects in TTT2I3 crystals are formed 

due to different coefficients of dilatation of TTT and iodine chains.  

The Hamiltonian of this interaction Hdef is presented as follows: 
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Here, )( xqB is the matrix element of a hole interaction with a defect; it is represented in the form 

)()2/()( xqx qINMqB   ,      (7) 

 

where )( xqI is the Fourier transformation of the derivative with respect to  intermolecular distance 

from the energy of interaction of a carrier with a defect and nx  numbers the defects that are 

considered linear along the x-direction of TTT chains and distributed randomly: 

 
2))(sin()( xx bqDqI  ,                                                         (8) 

 

Where D is a parameter that determines the intensity of hole interaction with a defect. It has the 

same meaning as 1w  in (5) and is measured in eV∙Å
−1

. 

The renormalized phonon spectrum Ω(q) is determined by the pole of the Green function 

and obtained from the transcendent dispersion equation 
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where the principal value of the dimensionless polarization operator takes the form: 
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Here, kn is the Fermi distribution function. Equation (9) can be solved only numerically. 
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3. Results and Discussion 

 

Numerical simulations for the 2D physical model of the crystal are performed for the 

following parameters [13]: M = 6.5 × 10
5
me (me is the mass of the free electron), w1 = 0.16 eV,  

1w= 0.26 eV∙Å
−1

, d1 = 0.015, γ1 = 1.7, γ2 is determined from the relationship: 1
55

12 / dab  ,  

kF= 0.502/2. The sound velocity along TTT chains was estimated by comparison of the 

calculated results for the electrical conductivity of TTT2I3 crystals [13] with the reported ones [8],

1sv  = 1.5 × 10
5
 cm/s. For 2sv  in transversal direction (in a direction) we have taken  

1.35 × 10
5
 cm/s. 

 

 

 

Figures 2 and 3 show the dependences of renormalized phonon frequencies Ω(qx) as a 

function of qx for different temperatures and different qy values. In the same graphs, the 

dependences for initial phonon frequency ω(qx) are shown. It is evident that the Ω(qx) values are 

diminished in comparison with those of ω(qx) in the absence of an electron–phonon interaction. 

This means that the electron–phonon interaction and structural defects diminish the values of 

lattice elastic constants. In addition, one can observe that, with a decrease in temperature T, the 

curves change their form, and a minimum appears in the Ω(qx) dependences. This minimum 

becomes more pronounced at lower temperatures. 

Figure 2 shows the case where qy = 0 and dimensionless Fermi momentum kF= 0.502π/2 

and D = 1.074eV∙Å
−1

.  Parameter D is a constant that determines the intensity of hole interaction 

with a defect. In this case, the interaction between TTT chains is neglected. The Peierls transition 

begins at T = 90 K. At this temperature, the electrical conductivity achieves a maximum. With 

the lowering temperature, the electrical conductivity decreases. Figure 3 shows the case where 

the interaction between TTT chains is taken into account (qy = π), D = 1.014 eV∙Å
−1 

and  

kF= 0.502π/2. In this case, the transition is completed at T = 20 K. It was observed that parameter 

D decreases or the hole interaction with a defect is smaller in this case. It is evident from Fig. 1 

that the electrical conductivity significantly decreases and achieves zero at T ~ 20 K. 

Fig. 2.Renormalized phonon spectrum 

Ω(qx) for γ1 = 1.7 and different 
temperatures. The dashed line is for the 

spectrum of free phonons. kF=0.502 π/2, 

D = 1.074 eV∙Å
−1

. 
 

Fig. 3.Renormalized phonon spectrum 

Ω(qx) for γ1 = 1.7 and different 
temperatures. The dashed line is for the 

spectrum of free phonons. kF=0.502π/2, 

D = 1.014 eV∙Å−1. 
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4. Conclusions 

 

The Peierls structural transition has been studied in existing organic crystals of TTT2I3 

with the lowest hole concentration value. The 2D physical model has been considered. The two 

most important electron–phonon interaction mechanisms—of the deformation potential type and 

the polaron type—have been considered. The interaction of carriers with defects has been 

analyzed. The renormalized phonon spectrum has been calculated in the random phase 

approximation. The method of retarded temperature dependent Green function has been applied. 

It has been shown that the Peierls transition temperature strongly depends on iodine 

concentration. It has been found that, if kF = 0.502/2 and the hole concentration achieves the 

lowest value, the Peierls transition begins at T ~90 K in TTT chains and considerably reduces the 

electrical conductivity. Due to interchain interaction, the transition is completed at T ~ 20 K.  
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