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 Abstract 

 

For an active multi-port network of direct current, as a model of distributed power supply 

system,   the problem of recalculation of the changeable load currents is considered.  Conditions 

of utilization of projective coordinates for the interpretation of changes or   "kinematics" of 

regime parameters of the network are determined. Therefore, changes in regime parameters are 

introduced by the cross ratio of four points. Easy-to-use formulas of the recalculation of the 

currents, which possess the group properties at a change in the conductivity of the loads, are 

obtained to express the final values of currents through the intermediate changes in the load 

currents and conductivities. The obtained results contribute to the development of the basics of 

the electric circuit theory.   

 

1. Introduction 

 

In the electric circuit theory, attention is given to the networks with variable parameters of 

elements. In particular, a new method, which can determine the functional dependence of any 

circuit variable with respect to any set of design variables, is presented in [1]. 

At present, special consideration is given to distributed renewable power supply systems 

with a lot of loads and voltage sources [2–5].  In turn, a particular problem of convenient 

recalculation of changeable load currents is raised.      The conventional approach uses the 

changes in load conductivities in the form of increments. Recalculation of currents leads to the 

solution of a system of algebraic equations of a corresponding order.   Therefore, for a number or 

group of changes in these conductivities, these increments should be counted concerning an 

initial circuit and the solution of the equations system is repeated. So, this nonfulfilment of group 

properties (when the final result should be obtained through intermediate results) complicates 

recalculation and limits the capabilities of this approach. 

An approach for the interpretation of changes or "kinematics" of the circuit regimes on the 

basis of projective geometry is represented in [6]. The changes in regime parameters are 

introduced otherwise. Therefore, as if obvious changes in the form of increments are formal and 

do not reflect the substantial aspect of the mutual influences: conductivities → currents. The 

offered approach allows obtaining the convenient formulas of recalculation of load currents. In 

particular, a network with a common node for a lot of loads is also shown [7, 8]. In this context, it 

is important to consider the general structure of the network.  
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2. Projective coordinates of an active two-port network 

 

Consider an active two-port with changeable load conductivities 
21

,
LL

YY  in Fig. 1a.   

 

          
a                                                                  b 

Fig. 1.    Active two-port (a) and active two-port regime with the second load base parameters (b). 
          

 

Let us give the necessary relationships for this circuit [7]. The circuit is described by the 

following system of the Y - parameters equations 
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where SCSC
II

21
,  are the short circuit SC currents.         

Taking into account the voltages 
111

/
L

YIV  ,  
222

/
L

YIV  ,  two bunches of load straight 

lines   with parameters 
21

,
LL

YY are shown  in Fig. 2.   

The bunch center, point 
2

G , corresponds to the bunch  with parameter
1L

Y  .  The bunch 

center corresponds to such a regime of the load 
1L

Y  that does not depend on its values.   It is 

carried out for 0,0
11
 VI   at the expense of the characteristic regime parameter of the second 

load in Fig. 1b:  

2

22
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22
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G

LL
Y

V

I
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The parameters of the center 
1

G  of bunch 
2L

Y have the similar form.   Another form of the 

characteristic regime is the short circuit regime of both loads ( 
1L

Y , 
2L

Y ) that is presented 

by point SC . The open circuit regime of both loads is also characteristic and corresponds to the 

origin of coordinates, point 0 .            

Let the initial or running regime correspond to point 
1

M , which is set by the values of 

conductivities 1

2

1

1
,

LL
YY  or currents 1

2

1

1
, II  of the loads. Also, this point is defined by the 

projective non-uniform 1

2

1

1
, mm  and homogeneous

1

3

1

2

1

1
,,   coordinates which are set by a 

reference triangle 
21

0 GG and a unit point SC  [7, 9]. Point 0  is the origin of coordinates and 

straight line 
21

GG  is the line of infinity .                                                                                                                                                                                                                                                                                                                                                          
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Fig. 2. Two bunches of load straight lines with the parameters 

21
,

LL
YY . 

 

The non-uniform projective coordinate 1

1
m  is set by a cross ratio of four points, three of 

them correspond to the points of the characteristic regimes, and the fourth corresponds to the 

point of the running regime  
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Here, the points 1

111
,0

G

LLL
YYY   correspond to the extreme or base values. The point of


1L

Y  is a unit point. These values of 
1

m are also shown in Fig. 2. For the point 1

1

1

1

G

LL
YY  , the 

projective coordinate 
1

m   defines the sense of line of infinity
21

GG . The cross ratio for the 

projective coordinate 1

2
m  is expressed similarly. The homogeneous projective coordinates

321
,,   set the non-uniform coordinates as follows: 
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where   is a coefficient of proportionality. 

The homogeneous coordinates are defined by the ratio of the distances of the points

SCM ,
1  to the sides of the reference triangle:  
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For finding distances 
SC

3

1

3
,  to straight line

21
GG  , the equation of this straight line is 
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used. Then 
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where 
3

  is a normalizing factor. 

The homogeneous coordinates have a matrix form 

][][][
11

IC  ,                                                       (5)                 

where matrix and vectors 
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From here, we may pass to the non-uniform coordinates  
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The inverse transformation of (5)  
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From here, we pass to the currents 
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Obtained transformation allows finding currents 
21

, II for the preset values of 

conductivities 
21

,
LL

YY by using coordinates
21

, mm .  Furthermore, we note these expressions (6) 

and (8) have the common form, which is convenient for practice.                                                                                                                                                                                                    
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We consider now the recalculation of the load currents.   Let a subsequent regime 

correspond to point 
2

M  with load parameters 2

2

2

1
,
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YY , 2

2

2

1
, II . 

The non-uniform 2

2

2

1
, mm coordinates are defined similarly to (3). Therefore,   the regime 

changes 21

1
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2
m  are naturally expressed through the cross ratio 
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We also define the homogeneous coordinates of the point 2
M  and represent nonuniform 

coordinates 2

1
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Using (7) and (8), we  immediately obtain the required currents                                                                                                       
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The obtained relationships carry out the recalculation of currents at a respective change in 

load conductivities. These relations are the projective transformations and possess group 

properties. 

 

3. Active multi-port network with a common node for loads 

 

Consider the active multi-port network in Fig. 3 with given elements and a common node 

N  for load conductivities
321

,,
LLL

YYY . In particular, internal conductance 
N

y
0

 of voltage source 

0
V  defines the mutual influence of the loads. 

A circuit is described by the following system of the Y -parameters equation 
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where SC
I

1
, SC

I
2

 , and 
SC

I
3

are the short circuit SC  currents of all the loads.  

Similarly to the above, let us give the necessary relationships and geometrical 

interpretation for this active multi-port. We accept that coordinate axes 
321

,, III  determine the 

three-dimensional Cartesian coordinate system ),,(
321

III  in Fig. 4. 

Taking into account voltages 
111

/
L

YIV  ,
222

/
L

YIV  , and 
323

/
L

YIV    , the equations 

of  three bunches of planes are obtained in the form 

0),,,(
1321


L

YIII , 0),,,(
2321


L

YIII , 0),,,(
3321


L

YIII . 

Crossing of the planes of one bunch among themselves defines a bunch axis. The equation 

of the axis of bunch 
1L

Y  corresponds to the condition 0
1
I , 0

1
V  and to equation 0),(

32
II . 

Therefore, this axis is located in the plane of 
32

, II  in Fig. 4 and determines the points of 
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intersection or the base values of 2

2

G
I ,

3

3

G
I . Similarly, we get the base value of 1

1

G
I . 

Thus, we accept the 
321

GGG  plane, which passes through these three points 1

1

G
I , 2

2

G
I , and

3

3

G
I , as 

the plane of infinity  . So, we get the coordinate tetrahedron
321

0 GGG . 

 

 
Fig. 3. Active multi-port with a common node N . 

 

 
Fig. 4. Cartesian coordinate system ),,(

321
III  and projective coordinate 

321
0 GGG . 

 

Let the initial or running regime correspond to point 
1

M , which is set by load 

conductivities 
1

3

1

2

1

1
,,

LLL
YYY  and currents 

1

3
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2

1

1
,, III .  Then, the running value

1

3L
Y  corresponds to the 

plane which passes through point 
1

M and straight line
21

GG . This line corresponds to the 
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intersection of the 
321

GGG ,
21

0 GG  planes. 

Similarly, the 1

2L
Y  value agrees with the plane that passes through point 1

M and straight 

line
31

GG . 

In addition, the 1

1L
Y  value matches point 1

M and straight line
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GG . We recall that this 

line is the axis of bunch plane
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Y . In turn, the values of 0
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Y are the 
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Y . Therefore, the running value 1
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coordinate 1
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m in the form of cross ratio of four points: 

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

0
)0(

G

LL

L

G

L

G

LL

LG

LL

YY

Y

YYY

Y
YYm










 .                               
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where  is a coefficient of proportionality. 

For finding the distances 1
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 is a normalizing factor. 

Similarly to (5), (7), and (8), we immediately obtain 
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Let the subsequent regime correspond to point 
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Similarly to (9) we get the subsequent currents                                                                                                                                           
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The obtained relationships are directly generalized to any number of loads and possess a 

group property. 

4.  General case of an active multi-port 

 

Let us consider the general case of an active multi-port in Fig. 5. The circuit is also described by 

system of equations (10).      Similarly to the above, we get the equations of three bunches of 

planes. Crossing of the planes of one bunch among themselves defines a bunch axis.                                               
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Fig. 5.  General case of an active multi-port. 

 

The equation of the axis of bunch 
1L

Y corresponds to the condition of 0
1
I , 0

1
V  and to 

equation 0),(
32

II . Therefore, this axis is located in the 
32

, II  plane in Fig. 6a. 

 
a                                                                                                       b 

 
Fig. 6.  Points of intersection do not coincide (a).     

Points of intersection coincide and form the plane of infinity  (b). 

 

Points )(
12 L

YI , )(
13 L

YI  are the points of intersection with the respective axis.  Similarly, 

we obtain points )(
21 L

YI , )(
23 L

YI  of intersection of bunch axis 
2L

Y and points )(
31 L

YI , )(
32 L

YI  of 

intersection of bunch axis
3L

Y . 

On the other hand, the projective system of coordinates must represent a tetrahedron 
3

3

2

2

1

1
,,,0

GGG
III in Fig. 6b. Therefore, the following conditions must be satisfied: 
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We should determine requirements for Y -parameters. To this end, let us consider the base 

point or base values, 1
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Using (10), we get 
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From here, the requirements have the form 
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Similarly, we consider that 2
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We consider that 
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The obtained requirements or base points (2)(5) are formally generalized to any number 

of loads. 

 

We will identify this distributed network as a balanced network for output terminals. 

 

The obtained conductivity values do not limit especially the functional possibility of these 

circuits, but allow essentially simplifying the calculation and recalculation of currents, as shown 

above.  

Using the network in Fig. 3, we obtain an example of the general case of multi- port in 

Fig. 7.  

If we choose the values of conductivities 
231312

,, yyy  by the required conditions, the 

balanced network is obtained. 
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Fig. 7. Example of the general case of multi-port. 

 

5. Conclusions 

 

1. Active two-ports are always the balanced networks. 

2. Active multi-ports with any number of loads can be balanced. 

3. Application of projective coordinates allows obtaining convenience formulas for the 

recalculation of load currents. 
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